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What Is Numerical Dissipation?

Everyone is talking about it,
but no one knows what is really Is.



Numerical Experiments
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Table 1

‘Wave Damping Simulations I

Series Wave Reco Riemann Time CFL Resolution GJ’I%D‘I r ‘J’I—}(;l q

#81 sound PL HLL RK4 0.01 64...1028 14.3 + 0.7 3.049 + 0.009

#82 sound MP5 LF RK4 0.01 8...256 429 + 23 4.957 £ 0.013

#83 sound MP5 HLL RK4 0.01 8...256 434 + 25 4.961 £ 0.014

#8584 sound MP5 HLLD RK4 0.01 8...256 427 + 2.2 4.956 + 0.013

#85 sound MP7 HLL RK4 0.01 8...64 302 + 20 6.897 + 0.021

#56 sound MP9 HLL RK4 0.01 8..32 830 &+ 340 8.42 + 0.15

#87 sound MP9 HLL RK3 0.5 8...256 1.492 £+ 0.013 2.985 + 0.002
#58 sound MP9 HLL RK3 0.1..0.9 64 245 £+ 0.17 2.95 + 0.01
#8589 sound MP9 HLL RK4 0.5 8..32 71 + 32 55402
#Al Alfvén MP5 LF RK4 0.01 8...256 42 + 3 4.95 + 0.02

#A2 Alfvén MP5 HLL RK4 0.01 8..256 426 + 2.1 4.96 + 0.01

#A3 Alfvén MP5 HLLD RK4 0.01 8..256 42 + 3 495 £ 0.02

#A4 Alfvén MP7 HLL RK4 0.01 8 ...128 44 + 53 6.19 + 0.03

#AS5 Alfvén MP9 HLL RK4 0.01 8...64 1190 + 190 8.57 + 0.06

#A6 Alfvén MP9 HLL RK3 0.8 16...128 0.86 £+ 0.08 2.949 + 0.022
#AT Alfvén MP9 HLL RK4 0.8 8...64 7.6 £25 5.18 £ 0.10
#A8 Alfvén MP5 HLL RK3 0.5 5...1024 e e
#MS1 magnetosonic MP5 HLL RK4 0.01 8..128 40 + 3 4.95 + 0.02

#MS2 magnetosonic MP7 HLL RK4 0.01 8...64 288 + 20 6.903 + 0.023

#MS3 magnetosonic MP9 HLL RK4 0.01 8...32 1970 + 160 8.82 + 0.03
#MS4 magnetosonic MP9 HLL RK3 0.1..0.9 64 1.77 = 0.06 2.977 + 0.007
#MS5 magnetosonic MP9 HLL RK4 0.2..0.9 64 43+ 08 4.834 + 0.013




4/3)v,+E&,

Numerical Experiments

sound wave damping

107°[:
IPL

107

—
<
&

[a—
<

107"

107"

0.001

4/3)v, +&,

107}
RK3 + ©

RK4 +

sound wave damping

107*

T T TTITI:

5

<

'R R RTTTL

T T TTITII:

[ B W EENTH

o
=

T T TTIIT:

10—7 . _('

' ERNIH




. ocal Truncation Error

discretized exact L[u] =0

Definition 7.4. The quantity
T(h) = A ld] = L[a]= A [d] = Ayl — Fin).
is called the local truncation error (local residual) of the numerical scheme Ay []=0.

Example7.5. Find the local truncation error of the numerical scheme

Up_1—2Up +u
Aglul = k-1 hzk k+1 ~ Fa=

for the solution of

This is solved exactly.

Solution. Now R L
g1 — 20+l 41

h2
Lal=ay - fi =0,

Amyli] = —Jk

but

so using the definition directly
Ty =Am[2]- L[] =0 ().



Dlnp

YR ~V-u+T,

% — _2V1 F.. : : : £y 2

D S NP+ Fyisc T Tu numerical viscosity: 7, = v*V7u + ...
1 2

Ekin - 5 pu dV
2 Jv
1
Or Fiiy = 5 / —pu - (u-Vu) — cgpu -Vin(p)+ pu - Flise — pu’u - Vin (p) — o’V - dV
|4

1
_/ PU - Ty + _10'7-1111’hou2 dV
% 2

How does the numerical error
i} depend on the grid resolution {}
and time integration?



(i41,7+2)

Discretize space onto a grid.

C\ N N N /)
J Y UV U/ \U
EE:I Use finite difference stencils for derivatives:
— — N D D DA
9, f(a) = 1 F M; ~ a‘f (@ =A%) | o(a?) D
(4, )
=== Method of lines for every (¢,7): 0;f = g(f) () () <> C) C)
Time integration (Runge-Kutta):
N D A A
ki = Atg(f(t)) ko= Atg(f(t)+ k1/2) CJ NN AN \)
n+1 _ fn k Ay
=Tk O—O——D—0©
@ Time Taylor expansion: N UAgc
P = Atg(F7) + AR /2g(F)g (F7) + .
+ Space Taylor expansion for off-diagonals. |:> T = ]—’nH — frd




Analytical Approach

Linear acoustic wave: | % data
() = po + b sin(z) . 1= 1.273208e — 10d¢>V+00
u(x) = csd sin(x) |
x € [0, 27] SR
n, = 8(dr = 0.78539816) L0-14 _
4™ order Runge-Kutta
1075 - S————




Analytical Approach

dt = 0.0221 LTxW0IX X x » % data
1.65 x 1071+

1.6 x 1071+ X

1.55 x 10712+
Hl=

1.5 x 10719+

1.45 x 10719+

1.4 x 10719+

T
1071
dx

time integration error

spatial discretization error



Acoustic Wave Damping

ik-x+iwt

/!

Im(w) # 0 wave damping

wave propagation: €

1
damping parameter: A = Im(w) = §yk2

numerical damping: \* = 5V k>

Perform linear acoustic wave simulations and n € [8,256]
measure the numerical damping. ’
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Finite Difference: Pencil Code
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Finite Difference: Pencil Code

Fix time step. 107 -
10-6 —

10-7 —

: ]

35 10 —

1079 -

10-10

1071 . . .
0.0 0.5 1.0
t

1.5

I time integration error

spatial discretization error
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Alfven Wave Damping

ik-x+iwt

/!

Im(w) # 0 wave damping

wave propagation: €

1
damping parameter: A = Im(w) = §(u + n)k?

1
numerical damping: \* = §(V* + n*)k?

Perform linear Alfven wave simulations and
) ; n € [8,256]
measure the numerical damping.
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Alfven Wave Damping
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Alfven Wave Damping
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Trixi.
Discontinuous Galerkin

CG DG DUPS on JUWELS Booster (strong scaling, 262144 elements, p=3)

-=@-- Trixi.jl

Trixi.jl ideal

==~ Trixi.jl (8x)

Trixi.jl (8x) ideal

--¥/-- FLUXO

FLUXO ideal

--A-- FLUXO ESX)
FLUXO (8x) ideal

(Stack Overflow)

10

DOF updates/second

107 T T T T T T T T T T
48 96 192 384 768 1536 3072 6144 12288 24576 41280
Number of ranks

OrdinaryDiffEq (SciML)
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(Umax — Umin)

— 1
2

Amplitude A(t)

dt =2 x 1073

polydeg =1

Trixi.

Integrator: CarpenterKennedy2N54

Acoustic wave: amplitude decay vs time
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Acoustic-wave damping rate vs. resolution (dt=2e-03, polydeg=1)
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Trixi.

Acoustic wave: amplitude vs time (nx=8, polydeg=1)

10754 —— dt=1.125e-03
—— dt=2.25e-03
ny =8  polydeg =1  tesens
'E —— dt=1.8e-02
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Integrator: CarpenterKennedy2N54 5 10
% 10—11_
No apparent dependence ondt. g oy
AAAAL
U R, Ty Y
L
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Time t
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Nge =8 polydeg = 2

2" order integrator: SSPRK22

Negative effective damping.

Trixi.

L (Umax = Umin)

Amplitude A(t)

,_|
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time integration error

Acoustic wave: amplitude vs time (nx=8, polydeg=2)

1 — dt=7e-03

—— dt=4.375e-04
—— dt=8.75e-04
—— dt=1.75e-03
—— dt=3.5e-03

—— dt=1.4e-02

0 100 200 300 4(:‘10 5(‘)0

Time t

19



Conclusion

‘ Numerical viscosity and diffusion can be calculated analytically.

‘ Find numerical diffusion in numerical experiments.

‘ Dependence on time step and resolution.

simon.candelaresi@uni-a.de, simon.candelaresi@gmail.com
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